RapidMiner Studio 9.10.0


RapidMiner Studio is a comprehensive data science platform with visual workflow design and full automation

Features

Visual Workflow Designer

Increase productivity across the entire data science team, from analysts to experts

Connect to Any Data Source

Work with all of your data, no matter where it lives

Automated In-Database Processing

Run data prep and ETL inside databases to keep your data optimized for advanced analytics

Data Visualization & Exploration

Evaluate data health, completeness, and quality

Data Prep & Blending

Eliminate the hassle of preparing data for predictive modeling

Visual & Automated Machine Learning

Quickly create impactful machine learning models without writing code

Model Validation

Understand the true performance of a model before deploying to production

Explainable Models Not Black Boxes

Create visual data science workflows that are easy to explain and easy to understand

Get More From R & Python Code

Scalable code deployment and collaboration between coders and non-coders

Flexible Scoring & Model Operations

Turn predictive insights into business impact

Automation & Process Control

Build sophisticated visual workflows and automate important tasks

Open & Extensible

Integrate with existing applications and code

What's New

Version 9.10.0:

Features:
  • Added Function Fitting operator that can optimize parameters in a function of the attributes to fit the label. It can be used to create an optimal function to fit the data points in your data.
  • Bias Awareness: if the use of a specific column is more likely to add unwanted bias to your models, it is highlighted as such. This happens in various places such as in the Statistics view of data, the model simulator, in Turbo Prep, in Auto Model, during model training, in model annotations among others.
Enhancements:
  • The De-Normalization operator has a new parameter to also de-normalize predictions.
  • Based on attribute name: prediction(abc) tries to use de-normalization of abc if no explicit de-normalization available
  • The label (or other special attributes) can be included in normalization already in the normalize operator. The changes allow for multiple prediction attributes to be affected
  • Added date format parameter to Write CSV in case format date attributes is selected
  • Improved performance of Append operator
  • Handled yet another case of JDBC drivers ignoring the JDBC standard gracefully (here: Infor Data Lake DatabaseMetaData#getTypeInfo())
  • Introduced operator signatures to improve the startup of Studio
  • Signatures contain meta information that is used in operator registration, global search setup and documentation browser display
  • Signatures are persisted between starts for an improved startup time
  • Signature persistence can be configured or cleared with the setting System -> Local File Cache -> Keep Operator Signatures
  • Time Series: Enabled the usage of constant values for the replace types in the Equalize Numerical Indices and Equalize Time Stamps operators
  • The operators can now be used to fill gaps in non-equal data sets with constant values
  • Time Series: All Time Series operators (except for Multi Horizon Forecast, Multi Horizon Performance) now working with Belt IOTable (as in- and output)
Bugfixes:
  • In rare instances, operator parameters did not get saved correctly if a default value was set for it. This e.g. affected date parameters used in extensions.
  • Generate Attributes max and min functions do now always return missing value if any of the values is missing.
  • Fixed missing operator help for Azure Blob Storage and Data Lake Storage operators

Requirements

OS X 10.8.0 or later

Screenshots


Download File

Size: 306 MB

Rapidgator Download | NitroFlare Download

Leave a Reply

Your email address will not be published. Required fields are marked *